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COSP: proxies for (coarse-resolution) model assessment 
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Observing system proxies map model state to observables

I.e. for clouds: 

From cloud state  

to (potentially multi-variate) observable 

via radiative properties 

Mapping seeks to account for conditional biases e.g. masking, sensitivity, …

ql,i,…(z), rl,i,…
e (z)

f(τ, re, Z, …; Δx, Δy, Δt)

σλ(z), ωλ
0(z), βλ(z), …



Proxies and simulators

See also: 

simulators for sensor design (e.g. ECSIM) or mission design (OSSEs)

forward operators in data assimilation  

Notes: 

Some observables (e.g. radiative fluxes) don’t use proxies 

Comparisons to active sensors tend to be closer to instrument signals

Summaries may be multi-faceted (definitional, multi-variate, …) 



Radar reflectivity [dBZ]
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Proxy precision and underlying uncertainty

Some quantities are well-measured*: 

 

Some observational estimate are hard to/not worth replicating in detail

Some biases are hard to anticipate

Some comparisons are most easily made in observation space 

τ = ∫
0

TOA
σ(z)dz

P = ∫
τ=1

TOA
P(z)σ(z)dz

re = F−1(F(re(z), P(z)))

Za
l = Zle−2τl

1 − e−2Δhlαl

2Δhlαl



Data assimilation for understanding uncertainty budgets

Data assimilation is effective when observations are unbiased* and conditional 
uncertainties are known 

  

with 

Efforts to quantify uncertainty for data assimilation might inform proxies/operators 
for other contexts 

𝒥(δx0) =
1
2

(δx0)TB−1(δx0) +
1
2 ∑

i

(H′ iδxi − di)T R−1
i (H′ iδxi − di)

di = yo
i − Hi(xb

i )



after Fielding and Janisková 2020, 10.1002/qj.3878
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Black Forest, Germany (48°32´24˝N, 8°23 4́9˝E), 
is displayed in Fig. 6. The biases introduced by the 
NUBF within the EarthCARE CPR footprint can 
be estimated (Tanelli et al. 2002; Sy et al. 2014) and 
are displayed in Fig. 6b. The simulated, uncorrected 
EarthCARE Doppler velocities at 1-km integra-
tion are shown in Fig. 6c where the noisy Doppler 
velocities in regions with radar reflectivities below 
–20 dBZ have been suppressed (Kollias et al. 2013). 

The NUBF biases are easy to detect near cloud 
edges and in areas with strong horizontal reflectivity 
gradients. CPR velocity folding is noticeable in liquid 
precipitation (e.g., at ranges between 200 and 250 km). 
Furthermore, the CPR velocity field is noisier than 
the ARM Doppler velocity field owing to the Doppler 
fading effect arising from satellite motion.

Figure 6d displays the results of using the 500-m 
integrated reflectivities simulated for the EarthCARE 

CPR and applies a NUBF 
c o r r e c t i o n  [o f  o r d e r 
0.2 m s–1 (dBZ km)–1 in 
magnitude] based on the 
gradient of ref lectiv ity 
across the 1-km footprint. 
Velocity unfolding is also 
performed using velocity 
continuity in the low levels. 
In areas with high signal-
to-noise ratio the simulated 
CPR velocity uncertainty is 
below 0.5 m s–1 Retrievals 
i n  v igorously  convec-
tive regions will be much 
more challenging. Further 
details of Doppler veloc-
ity correction techniques 
can be found in Schutgens 
(2008) and Sy et al. (2014).

The CPR cloud mask 
algorithm, based on Doppler 
cloud radar data f rom 
the Research Vessel Mirai 
(Okamoto et al. 2007, 2008) 
and CloudSat (Hagihara 
et al. 2010), uses signal-to-
noise ratio and spatial con-
tinuity to identify clouds. 
Classification into cloud 
particle types utilizes verti-
cal structures of reflectivity, 
Doppler velocity, and tem-
perature to identify three-
dimensional ice (3D), hori-
zontally oriented ice (2D), 
liquid water, the melting 
layer, snow, and rain. Ice-
scattering properties and 
ref lectivity-weighted ter-
minal velocity are estimated 
in terms of shape, orienta-
tion, and size by the discrete 
dipole approximation (Sato 

r�4DIFNBUJD�SFQSFTFOUBUJPO�	'JH��4#�
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backscatter signal strength, NUBF, and velocity folding (when phase shifts exceed 
180°) associated with Doppler measurements from space.

r�5IF�TIBEJOH�PG�UIF�$13�TBNQMJOH�WPMVNF�JOEJDBUFT�UIF�TUSFOHUI�PG�UIF�CBDLTDBU-
tered signal.
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due to the motion of the satellite (pink toward and blue away from the satellite).
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with no velocity folding.

r�1VSQMF�BSFBT��%PQQMFS�TQFDUSB�CSPBEFOFE�CZ�����N�T–1 due to satellite motion.
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1) Uniform weak echo !lling the beam; true Doppler velocity zero. The CPR velocity 
is unbiased, but with a large CPR error because of the poor signal-to-noise ratio.

2) Strong uniform echo; true Doppler velocity zero. The CPR velocity is unbiased 
with a much smaller error because of the higher signal-to-noise ratio.

3) Strong nonuniform echo; true Doppler velocity is zero. NUBF biases the CPR 
velocity. The bias may be corrected if the re"ectivity gradient across the beam is 
known.

4) Return to a uniform echo, but with the true velocity outside the Nyquist 
frequency. The CPR mean velocity is folded.

CHALLENGES IN MEASURING DOPPLER VELOCITIES 
FROM SPACE

AUGUST 2015|1316
Illingworth et  al. 2015, 10.1175/BAMS-D-12-00227.1



From COSP to km-scale models

Innovation is endless - experience suggests enabling experimentation and iteration 

At resolved scales: 

What is required for ergodicity to defeat limited sampling? 

To what extent can vertical motion and microphysics be unfolded? 

At unresolved scales: 

Can confidence in observations and/or models be categorized?

Effort spent in mapping model to observations can be targeted (observing system 
proxy is not always the largest source of uncertainty)

What lightweight proxies for km-scale models?


